# 2,6-Diaryl-4,4-disubstituted-4H-thiopyran: <br> Source for Spiro Heterocycles 

Venkatapuram Padmavathi*, Akula Balaiah and Dandu Bhaskar Reddy
Department of Chemistry, Sri Venkateswara University, Tirupati -517 502, India
Received October 22, 2001
The 1,5-diaryl-3,3-disubstituted-1,5-pentanedione on reaction with ammonium acetate, phosphorus pentoxide and phosphorus pentasulfide gave respective 1,4-dihydropyridine, $4 H$-pyran and 4 H -thiopyran. Novel spiro heterocycles have been obtained by the cyclocondensation of 4 H thiopyran with hydrazine, hydroxylamine, urea and thiourea.
J. Heterocyclic Chem., 39, 649 (2002).

As a result of our sustained efforts in the search for new and versatile multi-functional reactive intermediates, recently we have reported the preparation of 1,5-diaryl-3,3-disubstituted-1,5-pentanediones $\mathbf{1}$ and 2 by the reaction of phenacyl bromide with dimethyl malonate and ethylcyano acetate [1]. The presence of dicarbonyl functionality in $\mathbf{1}$ and $\mathbf{2}$ enabled us to incorporate $\mathrm{N}, \mathrm{O}$ and S as heteroatoms in them [2]. This gave scope for us to design and develop hitherto unknown spiro heterocycles by exploiting the gem diester or cyano ester groups of 1,4-dihydropyridine ( $\mathbf{3}$ and $\mathbf{4}$ ), 4 H -thiopyran ( $\mathbf{5}$ and $\mathbf{6}$ ) and 4 H -pyran ( $\mathbf{7}$ and $\mathbf{8}$ ). In fact, during the last decade we were actively involved in the syntheses of several spiro-heterocycles [3]. In further development of this synthetic strategy, we have now considered the reactivity of the 2,6-diaryl-4,4-disub-stituted- $4 H$-thiopyran $(\mathbf{5}$ and $\mathbf{6}$ ) with hydrazine, hydroxylamine, urea and thiourea.
The synthetic method involves the reaction of 1,5-diaryl-3,3-dimethoxycarbonyl-1,5-pentanedione (1) or 1,5-diaryl-3-cyano-3-ethoxycarbonyl-1,5-pentanedione (2) with ammonium acetate in acetic acid, phosphorus pentasulfide in xylene and phosphorus pentoxide in dry benzene under reflux conditions to obtain 2,6-diaryl-4,4-dimethoxycarbonyl-1,4-dihydropyridine (3) or 2,6-diaryl-



1 or 2

$\mathrm{X}=\mathrm{Y}=\mathrm{CO}_{2} \mathrm{Me}, \mathbf{1 , 3 , 5 , 7}$
Ar a) $\mathrm{C}_{6} \mathrm{H}_{5}$, b) $4-\mathrm{OMeC}_{6} \mathrm{H}_{4}$, b) $4-\mathrm{ClC}_{6} \mathrm{H}_{4}$,

4-cyano-4-ethoxycarbonyl-1,4-dihydropyridine (4), 2,6-diaryl-4,4-dimethoxycarbonyl-4H-thiopyran (5) or 2,6-diaryl-4-cyano-4-ethoxycarbonyl-4H-thiopyran (6) and 2,6-diaryl-4,4-dimethoxycarbonyl-4H-pyran (7) or 2,6-diaryl-4-cyano-4-ethoxycarbonyl-4H-pyran (8) respectively (see Scheme 1 and Table 1) . Displacement of the oxygen atom in $\mathbf{7}$ or $\mathbf{8}$ on treatment with excess phosphorus pentasulfide in boiling xylene also gave 5 or 6 . The absence of carbonyl absorption (ArCO) around 1690 in IR spectra of 3-8 indicated their formation. Further $\mathbf{3}$ or $\mathbf{4}$ showed a band around 3350-3450 for (NH). The ${ }^{1} \mathrm{H}$ NMR spectra of 3-8 showed a singlet in the region $5.22-5.86$, which accounts for $\mathrm{C}_{3}-\mathrm{H}$ and $\mathrm{C}_{5}-\mathrm{H}$ protons. However in case of $\mathbf{3}$ and $\mathbf{4}$ a singlet was observed around 9.02-9.20 for NH which disappeares on deuteration. The ${ }^{13} \mathrm{C}$ NMR spectra of 3-8 exhibited resonance signals at 142.15 $152.28\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{6}\right), 91.78-120.54\left(\mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{5}\right)$ and 41.24 $-45.67\left(\mathrm{C}_{4}\right)$ which also support their structures (Table 3). The cyclocondensation of 5 with hydrazine, hydroxylamine, urea and thiourea in the presence of sodium methoxide resulted in the formation of 7,9-diaryl-8-thia-2,3-diaza-spiro[4,5]deca-6,9-diene-1,4-dione (9), 7,9-diaryl-2-oxa-8-thia-3-aza-spiro[4,5]deca-6,9-diene-1,4dione (10), 8,10-diaryl-9-thia-2,4-diaza-spiro[5,5]undeca-


Scheme 2

5

10
11


Table 1
Physical Properties for Compounds 3-8

| Comp. | $\begin{aligned} & \text { M.P } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$ | Yield (\%) | Molecular formula (Molecular weight) | Calcd. (Found) \% |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | C | H | N |
| 3a | 168-169 | 68 | $\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{4} \\ 349.38 \end{gathered}$ | $\begin{gathered} 72.19 \\ (72.33) \end{gathered}$ | $\begin{gathered} 5.48 \\ (5.54) \end{gathered}$ | $\begin{gathered} 4.01 \\ (3.97) \end{gathered}$ |
| 3b | 182-183 | 71 | $\begin{gathered} \mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{6} \\ 409.43 \end{gathered}$ | $\begin{gathered} 67.47 \\ (67.25) \end{gathered}$ | $\begin{gathered} 5.66 \\ (5.78) \end{gathered}$ | $\begin{gathered} 3.42 \\ (3.57) \end{gathered}$ |
| 3 c | 148-149 | 64 | $\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NO}_{4} \\ 418.27 \end{gathered}$ | $\begin{gathered} 60.30 \\ (60.43) \end{gathered}$ | $\begin{gathered} 4.10 \\ (4.16) \end{gathered}$ | $\begin{gathered} 3.35 \\ (3.19) \end{gathered}$ |
| 4a | 152-153 | 66 | $\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \\ 330.38 \end{gathered}$ | $\begin{gathered} 76.34 \\ (76.50) \end{gathered}$ | $\begin{gathered} 5.49 \\ (5.53) \end{gathered}$ | $\begin{gathered} 8.48 \\ (8.29) \end{gathered}$ |
| 4b | 170-171 | 69 | $\begin{gathered} \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \\ 390.43 \end{gathered}$ | $\begin{gathered} 70.75 \\ (70.62) \end{gathered}$ | $\begin{gathered} 5.68 \\ (5.72) \end{gathered}$ | $\begin{gathered} 7.17 \\ (7.29) \end{gathered}$ |
| 4 c | 132-133 | 62 | $\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \\ 399.27 \end{gathered}$ | $\begin{gathered} 63.17 \\ (63.08) \end{gathered}$ | $\begin{gathered} 4.04 \\ (4.12) \end{gathered}$ | $\begin{gathered} 7.02 \\ (7.13) \end{gathered}$ |
| 5a | 181-182 | $\begin{aligned} & 40 \\ & 57 * \end{aligned}$ | $\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S} \\ 366.43 \end{gathered}$ | $\begin{gathered} 69.83 \\ (69.70) \end{gathered}$ | $\begin{aligned} & 4.95 \\ & (5.02) \end{aligned}$ | - |
| 5b | 192-194 | $\begin{aligned} & 35 \\ & 51^{*} \end{aligned}$ | $\begin{gathered} \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~S} \\ 426.48 \end{gathered}$ | $\begin{gathered} 64.77 \\ (64.66) \end{gathered}$ | $\begin{gathered} 5.20 \\ (5.07) \end{gathered}$ | - |
| 5c | 168-169 | $\begin{aligned} & 38 \\ & 59 * \end{aligned}$ | $\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{~S} \\ 435.32 \end{gathered}$ | $\begin{gathered} 57.94 \\ (57.84) \end{gathered}$ | $\begin{gathered} 3.70 \\ (3.79) \end{gathered}$ | - |
| 6 a | 158-159 | $\begin{aligned} & 42 \\ & 62^{*} \end{aligned}$ | $\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S} \\ 347.43 \end{gathered}$ | $\begin{gathered} 72.59 \\ (72.42) \end{gathered}$ | $\begin{gathered} 4.93 \\ (4.97) \end{gathered}$ | $\begin{gathered} 4.03 \\ (4.16) \end{gathered}$ |
| 6b | 172-173 | $\begin{aligned} & 39 \\ & 50^{*} \end{aligned}$ | $\begin{gathered} \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S} \\ 407.48 \end{gathered}$ | $\begin{gathered} 67.79 \\ (67.92) \end{gathered}$ | $\begin{gathered} 5.19 \\ (5.06) \end{gathered}$ | $\begin{gathered} 3.43 \\ (3.55) \end{gathered}$ |
| 6 c | 146-147 | $\begin{aligned} & 45 \\ & 52^{*} \end{aligned}$ | $\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{~S} \\ 416.32 \end{gathered}$ | $\begin{gathered} 60.58 \\ (60.73) \end{gathered}$ | $\begin{gathered} 3.63 \\ (3.72) \end{gathered}$ | $\begin{gathered} 3.36 \\ (3.47) \end{gathered}$ |
| 7a | 143-144 | 65 | $\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{5} \\ 350.36 \end{gathered}$ | $\begin{gathered} 71.99 \\ (71.81) \end{gathered}$ | $\begin{gathered} 5.18 \\ (5.12) \end{gathered}$ | - |
| 7b | 151-152 | 72 | $\begin{gathered} \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{7} \\ 410.41 \end{gathered}$ | $\begin{gathered} 67.31 \\ (67.50) \end{gathered}$ | $\begin{gathered} 5.40 \\ (5.47) \end{gathered}$ | - |
| 7c | 175-176 | 69 | $\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{5} \\ 419.25 \end{gathered}$ | $\begin{gathered} 60.16 \\ (60.28) \end{gathered}$ | $\begin{gathered} 3.85 \\ (3.90) \end{gathered}$ | ${ }^{-}$ |
| 8a | 132-133 | 78 | $\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{3} \\ 331.36 \end{gathered}$ | $\begin{gathered} 76.12 \\ (76.37) \end{gathered}$ | $\begin{gathered} 5.17 \\ (5.10) \end{gathered}$ | $\begin{gathered} 4.23 \\ (4.33) \end{gathered}$ |
| 8b | 149-150 | 75 | $\begin{gathered} \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{5} \\ 391.41 \end{gathered}$ | $\begin{gathered} 70.58 \\ (70.77) \end{gathered}$ | $\begin{gathered} 5.41 \\ (5.36) \end{gathered}$ | $\begin{gathered} 3.58 \\ (3.69) \end{gathered}$ |
| 8C | 135-136 | 71 | $\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NO}_{3} \\ 400.25 \end{gathered}$ | $\begin{gathered} 63.02 \\ (62.90) \end{gathered}$ | $\begin{gathered} 3.78 \\ (3.85) \end{gathered}$ | $\begin{gathered} 3.50 \\ (3.32) \end{gathered}$ |

* Yields obtained in method 2.

7,10-diene-1,3,5-trione (11) and 8,10-diaryl-3-thioxo-9-thia-2,4-diaza-spiro[5,5]undeca-7,10-diene-1,5-dione (12) respectively (see Scheme 2). In a similar way the reaction of 6 in the presence of sodium ethoxide furnished 4-amino-7,9-diaryl-8-thia-2,3-diazaspiro[4,5]deca-3,6,9-trien-1-one (13), 4-amino-7,9-diaryl-2-oxa-8-thia-3-aza-spiro[4,5]deca-3,6,9-trien-1-one (14), 5-amino-3-hydroxy-8,10-diaryl-9-thia-2,4-diazaspiro[5,5]undeca-2,4,7,10-tetraen-1-one (15) and 5-amino-3-mercapto-8,10-diaryl-9-thia-2,4-diaza-spiro[5,5]undeca-2,4,7,10-teraen-1-one (16) (see Scheme 3 and Table 2). The IR spectra of $\mathbf{9 - 1 6}$ exhibited absorption bands in the region 1495-1510 ( $\mathrm{C}=\mathrm{S}$ ) [4], 1655-1725 (CONH), 1745-1770 (CO-O), 3300-3440 $(\mathrm{OH})$ and 3100-3310 $\left(\mathrm{CONH}\right.$, and $\left.\mathrm{NH}_{2}\right)$. The absorption for the SH group generally appears as a weak band around 2550-2600 [5], however this is not observed for our compounds. The ${ }^{1} \mathrm{H}$ NMR spectra of all these compounds

Table 2
Physical Properties for Compounds 9-16

| Comp. | $\begin{aligned} & \text { M.P } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$ | Yield (\%) | Molecular formula (Molecular weight) | Calcd. (Found) \% |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | C | H | N |
| 9a | 245-247 | 68 | $\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} \\ 334.39 \end{gathered}$ | $\begin{gathered} 68.24 \\ (68.10) \end{gathered}$ | $\begin{gathered} 4.22 \\ (4.12) \end{gathered}$ | $\begin{gathered} 8.38 \\ (8.23) \end{gathered}$ |
| 9b | 238-240 | 64 | $\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} \\ 394.44 \end{gathered}$ | $\begin{gathered} 63.94 \\ (64.15) \end{gathered}$ | $\begin{gathered} 4.60 \\ (4.51) \end{gathered}$ | $\begin{gathered} 7.10 \\ (7.22) \end{gathered}$ |
| 9c | 229-231 | 59 | $\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} \\ 403.28 \end{gathered}$ | $\begin{gathered} 56.59 \\ (56.70) \end{gathered}$ | $\begin{gathered} 3.00 \\ (2.93) \end{gathered}$ | $\begin{gathered} 6.94 \\ (6.78) \end{gathered}$ |
| 10a | 199-200 | 69 | $\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S} \\ 335.37 \end{gathered}$ | $\begin{gathered} 68.04 \\ (68.26) \end{gathered}$ | $\begin{gathered} 3.91 \\ (3.84) \end{gathered}$ | $\begin{gathered} 4.18 \\ (4.31) \end{gathered}$ |
| 10b | 211-212 | 61 | $\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S} \\ 395.43 \end{gathered}$ | $\begin{gathered} 63.79 \\ (63.56) \end{gathered}$ | $\begin{gathered} 4.33 \\ (4.40) \end{gathered}$ | $\begin{gathered} 3.54 \\ (3.63) \end{gathered}$ |
| 10c | 185-186 | 70 | $\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{11} \mathrm{C}_{12} \mathrm{NO}_{3} \mathrm{~S} \\ 404.26 \end{gathered}$ | $\begin{gathered} 56.45 \\ (56.53) \end{gathered}$ | $\begin{gathered} 2.74 \\ (2.70) \end{gathered}$ | $\begin{gathered} 3.46 \\ (3.38) \end{gathered}$ |
| 11a | 280-282 | 55 | $\begin{gathered} \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} \\ 362.42 \end{gathered}$ | $\begin{gathered} 66.28 \\ (66.38) \end{gathered}$ | $\begin{gathered} 3.89 \\ (3.97) \end{gathered}$ | $\begin{gathered} 7.73 \\ (7.63) \end{gathered}$ |
| 11b | 286-288 | 58 | $\begin{gathered} \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} \\ 422.45 \end{gathered}$ | $\begin{gathered} 62.55 \\ (62.75) \end{gathered}$ | $\begin{gathered} 4.29 \\ (4.36) \end{gathered}$ | $\begin{gathered} 6.63 \\ (6.70) \end{gathered}$ |
| 11c | 274-276 | 51 | $\begin{gathered} \mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} \\ 431.29 \end{gathered}$ | $\begin{gathered} 55.70 \\ (55.54) \end{gathered}$ | $\begin{gathered} 2.80 \\ (2.87) \end{gathered}$ | $\begin{gathered} 6.49 \\ (6.35) \end{gathered}$ |
| 12a | 282-284 | 60 | $\begin{gathered} \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \\ 378.46 \end{gathered}$ | $\begin{gathered} 63.47 \\ (63.55) \end{gathered}$ | $\begin{gathered} 3.73 \\ (3.65) \end{gathered}$ | $\begin{gathered} 7.40 \\ (7.50) \end{gathered}$ |
| 12b | 277-279 | 59 | $\begin{gathered} \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \\ 438.52 \end{gathered}$ | $\begin{gathered} 60.26 \\ (60.14) \end{gathered}$ | $\begin{gathered} 4.14 \\ (4.24) \end{gathered}$ | $\begin{gathered} 6.39 \\ (6.27) \end{gathered}$ |
| 12c | 268-270 | 57 | $\begin{gathered} \mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \\ 447.36 \end{gathered}$ | $\begin{gathered} 53.70 \\ (53.88) \end{gathered}$ | $\begin{gathered} 2.70 \\ (2.65) \end{gathered}$ | $\begin{gathered} 6.26 \\ (6.37) \end{gathered}$ |
| 13a | 210-211 | 63 | $\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS} \\ 333.40 \end{gathered}$ | $\begin{gathered} 68.45 \\ (68.58) \end{gathered}$ | $\begin{gathered} 4.53 \\ (4.44) \end{gathered}$ | $\begin{gathered} 12.60 \\ (12.75) \end{gathered}$ |
| 13b | 245-247 | 54 | $\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} \\ 393.46 \end{gathered}$ | $\begin{gathered} 64.10 \\ (64.15) \end{gathered}$ | $\begin{gathered} 4.87 \\ (4.80) \end{gathered}$ | $\begin{gathered} 10.68 \\ (10.80) \end{gathered}$ |
| 13c | 233-234 | 62 | $\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{OS} \\ 402.29 \end{gathered}$ | $\begin{gathered} 56.73 \\ (56.59) \end{gathered}$ | $\begin{gathered} 3.26 \\ (3.36) \end{gathered}$ | $\begin{gathered} 10.44 \\ (10.35) \end{gathered}$ |
| 14a | 182-183 | 65 | $\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} \\ 334.39 \end{gathered}$ | $\begin{gathered} 68.24 \\ (68.09) \end{gathered}$ | $\begin{gathered} 4.22 \\ (4.17) \end{gathered}$ | $\begin{gathered} 8.38 \\ (8.51) \end{gathered}$ |
| 14b | 169-170 | 60 | $\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} \\ 394.44 \end{gathered}$ | $\begin{gathered} 63.94 \\ (63.71) \end{gathered}$ | $\begin{gathered} 4.60 \\ (4.56) \end{gathered}$ | $\begin{gathered} 7.10 \\ (7.23) \end{gathered}$ |
| 14C | 195-196 | 58 | $\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} \\ 403.28 \end{gathered}$ | $\begin{gathered} 56.59 \\ (56.74) \end{gathered}$ | $\begin{gathered} 3.00 \\ (3.07) \end{gathered}$ | $\begin{gathered} 6.95 \\ (6.83) \end{gathered}$ |
| 15a | 266-268 | 65 | $\begin{gathered} \mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S} \\ 361.41 \end{gathered}$ | $\begin{gathered} 66.46 \\ (66.65) \end{gathered}$ | $\begin{gathered} 4.18 \\ (4.27) \end{gathered}$ | $\begin{gathered} 11.63 \\ (11.72) \end{gathered}$ |
| 15b | 272-274 | 69 | $\begin{gathered} \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S} \\ 421.47 \end{gathered}$ | $\begin{gathered} 62.69 \\ (62.77) \end{gathered}$ | $\begin{gathered} 4.54 \\ (4.59) \end{gathered}$ | $\begin{gathered} 9.97 \\ (9.85) \end{gathered}$ |
| 15c | 291-293 | 66 | $\begin{gathered} \mathrm{C}_{20} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S} \\ 430.31 \end{gathered}$ | $\begin{gathered} 55.82 \\ (55.66) \end{gathered}$ | $\begin{gathered} 3.05 \\ (2.98) \end{gathered}$ | $\begin{gathered} 9.77 \\ (9.81) \end{gathered}$ |
| 16a | 257-259 | 72 | $\begin{gathered} \mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}_{2} \\ 377.48 \end{gathered}$ | $\begin{gathered} 63.64 \\ (63.54) \end{gathered}$ | $\begin{gathered} 4.01 \\ (4.08) \end{gathered}$ | $\begin{gathered} 11.13 \\ (11.28) \end{gathered}$ |
| 16b | 294-296 | 68 | $\begin{gathered} \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2} \\ 437.53 \end{gathered}$ | $\begin{gathered} 60.39 \\ (60.57) \end{gathered}$ | $\begin{gathered} 4.38 \\ (4.48) \end{gathered}$ | $\begin{gathered} 9.60 \\ (9.49) \end{gathered}$ |
| 16c | 281-283 | 70 | $\begin{gathered} \mathrm{C}_{20} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{OS}_{2} \\ 446.37 \end{gathered}$ | $\begin{gathered} 53.81 \\ (53.70) \end{gathered}$ | $\begin{gathered} 2.94 \\ (2.88) \end{gathered}$ | $\begin{gathered} 9.41 \\ (9.58) \end{gathered}$ |

showed singlets at 1.41-1.42 (SH), 5.20-5.67 $\left(\mathrm{C}_{6}-\mathrm{H}\right.$ and $\mathrm{C}_{10}-\mathrm{H}, \mathrm{C}_{7}-\mathrm{H}$ and $\left.\mathrm{C}_{11}-\mathrm{H}\right)$ and 8.88-10.22 $\left(\mathrm{NH}_{2}, \mathrm{NH}\right.$ and $\mathrm{OH})$. The $\delta_{\mathrm{C}}$ values obtained in their ${ }^{13} \mathrm{C}$ NMR spectra also support the structures (Table 4).

In conclusion, interesting spiro heterocycles were conveniently prepared by a straightforward successfully established method from simple substrates such as phenacyl bromide and active methylene compounds.

Table 3
Spectroscopic Data of Compounds 3-8

| Compd. | ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right)$, ppm |
| :---: | :---: |
| 3a | $3.82\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 5.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{5}-\mathrm{H}\right), 7.20-$ 7.74 (m, 10H, ArH), 9.03 (s, 1H, NH Exch. with $\mathrm{D}_{2} \mathrm{O}$ ) |
| 3b | $3.62\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 5.29\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{5}-\mathrm{H}\right)$, 7.19-7.75 (m, 8H, ArH), 9.22 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$ Exch. with $\mathrm{D}_{2} \mathrm{O}$ ) |
| 3c | $3.83\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 5.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{3} \text { and } \mathrm{C}_{5}-\mathrm{H}\right), 7.22-$ $7.75(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 9.13\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} \text { Exch. with } \mathrm{D}_{2} \mathrm{O}\right)$ |
| 4a | $\begin{aligned} & 1.42\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.36\left(\mathrm{q}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{3}\right. \\ & \text { and } \left.\mathrm{C}_{5}-\mathrm{H}\right), 7.24-7.75(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 9.20\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} \text { Exch. with } \mathrm{D}_{2} \mathrm{O}\right) \end{aligned}$ |
| 4b | $1.44\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.57\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 4.35(\mathrm{q}, 2 \mathrm{H}$, $-\mathrm{OCH}_{2} \mathrm{CH}_{3}$ ), $5.38\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{5}-\mathrm{H}\right), 7.23-7.75(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}$, 9.06 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$ exch. with $\mathrm{D}_{2} \mathrm{O}$ ) |
| 4c | $1.41\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.36\left(\mathrm{q}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.33(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{C}_{3}$ and $\left.\mathrm{C}_{5}-\mathrm{H}\right), 7.24-7.75(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 9.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$ exch. with $\mathrm{D}_{2} \mathrm{O}$ ) |
| 5a | $\begin{aligned} & 3.78\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 5.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{3} \text { and } \mathrm{C}_{5}-\mathrm{H}\right), 7.19-7.75 \\ & (\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}) \end{aligned}$ |
| 5b | $\begin{aligned} & 3.61\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 3.82\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 5.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{3}\right. \\ & \text { and } \left.\mathrm{C}_{5}-\mathrm{H}\right), 7.22-7.75(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}) \end{aligned}$ |
| 5c | $\begin{aligned} & 3.79\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 5.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{3} \text { and } \mathrm{C}_{5}-\mathrm{H}\right), ~ 7.20-7.75 \\ & (\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}) \end{aligned}$ |
| 6 a | 1.43 (t, 3H, - $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ ), 4.37 (q, 2H, - $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ ), 5.77 ( s , $2 \mathrm{H}, \mathrm{C}_{3}$ and $\left.\mathrm{C}_{5}-\mathrm{H}\right), 7.21-7.75(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$ |
| 6b | $\begin{aligned} & 1.43\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.62\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 4.38(\mathrm{q}, 2 \mathrm{H}, \\ & \left.-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.75\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{3} \text { and } \mathrm{C}_{5}-\mathrm{H}\right), 7.20-7.75(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}) \end{aligned}$ |
| 6c | $\begin{aligned} & 1.41\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.36\left(\mathrm{q}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.75 \\ & \left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{3} \text { and } \mathrm{C}_{5}-\mathrm{H}\right), 7.21-7.76(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}) \end{aligned}$ |
| 7a | $\begin{aligned} & 3.80\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 5.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{3} \text { and } \mathrm{C}_{5}-\mathrm{H}\right), 7.25-7.75 \\ & (\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}) \end{aligned}$ |
| 7b | $\begin{aligned} & 3.62\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 5.72(\mathrm{~s}, 2 \mathrm{H}, \\ & \left.\mathrm{C}_{3} \text { and } \mathrm{C}_{5}-\mathrm{H}\right), 7.28-7.75(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}) \end{aligned}$ |
| 7c | $\begin{aligned} & 3.81\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 5.75\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{3} \text { and } \mathrm{C}_{5}-\mathrm{H}\right), 7.29-7.74 \\ & (\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}) \end{aligned}$ |
| 8a | $1.40\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.35\left(\mathrm{q}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.62(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{C}_{3}$ and $\mathrm{C}_{5}-\mathrm{H}$ ), 7.24-7.77 (m, 10H, ArH ) |
| 8b | $\begin{aligned} & 1.43\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.59\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 4.33(\mathrm{q}, 2 \mathrm{H}, \\ & \left.-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{3} \text { and } \mathrm{C}_{5}-\mathrm{H}\right), 7.22-7.74(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}) \end{aligned}$ |
| 8c | $\begin{aligned} & 1.39\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.38\left(\mathrm{q}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.64(\mathrm{~s}, 2 \mathrm{H}, \\ & \left.\mathrm{C}_{3} \text { and } \mathrm{C}_{5}-\mathrm{H}\right), 7.21-7.72(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}) \end{aligned}$ |

Scheme 3


13


15


14


16
${ }^{13}$ C NMR
$\delta\left(\mathrm{CDCl}_{3}\right)$, ppm
$45.21\left(\mathrm{C}_{4}\right), 52.35\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 119.11\left(\mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{5}\right)$, $142.15\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{6}\right), 173.25\left(\mathrm{COOCH}_{3}\right)$
$45.62\left(\mathrm{C}_{4}\right), 52.41\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 119.27\left(\mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{5}\right), 142.35$ $\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{6}\right), 173.28\left(\mathrm{COOCH}_{3}\right)$
$14.21\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}, 45.23\left(\mathrm{C}_{4}\right), 63.55\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 113.25(\mathrm{CN})\right.$, $120.24\left(\mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{5}\right), 142.21\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{6}\right), 169.48\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$ $14.19\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 45.27\left(\mathrm{C}_{4}\right), 51.62\left(\mathrm{Ar}-\mathrm{OCH}_{3}\right), 63.58$ $\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 113.54(\mathrm{CN}), 120.54\left(\mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{5}\right), 142.28\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{6}\right), 169.00\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$
$45.49\left(\mathrm{C}_{4}\right), 52.51\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 110.23\left(\mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{5}\right), 145.17$
$\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{6}\right), 171.29\left(\mathrm{COOCH}_{3}\right)$
$45.57\left(\mathrm{C}_{4}\right), 52.56\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 51.72\left(\mathrm{Ar}-\mathrm{OCH}_{3}\right), 110.77$
$\left(\mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{5}\right), 145.61\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{6}\right), 171.98\left(\mathrm{COOCH}_{3}\right)$
$14.68\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 45.67\left(\mathrm{C}_{4}\right), 63.65\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 110.82\left(\mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{5}\right), 113.61(\mathrm{CN}), 151.53\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{6}\right), 168.89\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$
$14.58\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 45.66\left(\mathrm{C}_{4}\right), 63.67\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 110.81\left(\mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{5}\right), 113.58(\mathrm{CN}), 152.28\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{6}\right), 168.57\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$ $41.52\left(\mathrm{C}_{4}\right), 53.21\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 93.72\left(\mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{5}\right), 149.98\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{6}\right), 170.18\left(\mathrm{COOCH}_{3}\right)$
$41.95\left(\mathrm{C}_{4}\right), 53.26\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 91.78\left(\mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{5}\right), 149.00\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{6}\right), 169.97\left(\mathrm{COOCH}_{3}\right)$
$14.18\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 41.08\left(\mathrm{C}_{4}\right), 63.54\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 94.05\left(\mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{5}\right), 112.80(\mathrm{CN}), 151.48\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{6}\right), 167.82\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$
$14.15\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 41.24\left(\mathrm{C}_{4}\right), 63.56\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 94.90\left(\mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{5}\right), 112.77(\mathrm{CN}), 151.42\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{6}\right), 168.11\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$

Ar a) $\mathrm{C}_{6} \mathrm{H}_{5}$, b) $4-\mathrm{OMeC}_{6} \mathrm{H}_{4}$, c) $4-\mathrm{ClC}_{6} \mathrm{H}_{4}$

Table 4
Spectroscopic Data of Compounds 9-16

| Compd | ${ }^{1} \mathrm{H}$ NMR |
| :---: | :---: |
|  | $\delta$ (DMSO- $\mathrm{d}_{6}$ ) , ppm |
| 9a | $\begin{aligned} & 5.25\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6} \text { and } \mathrm{C}_{10}-\mathrm{H}\right), 7.25-7.76(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 9.09 \\ & \left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH} \text { Exch. with } \mathrm{D}_{2} \mathrm{O}\right) \end{aligned}$ |
| 9b | $3.62\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 5.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6} \text { and } \mathrm{C}_{10}-\mathrm{H}\right), 7.22-7.77$ (m, 8H, ArH), 9.17 (s, 2H, NH Exch. with $\mathrm{D}_{2} \mathrm{O}$ ) |
| 9c | $5.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6} \text { and } \mathrm{C}_{10}-\mathrm{H}\right), 7.21-7.75(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 9.25$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{NH} \text { Exch. with } \mathrm{D}_{2} \mathrm{O}\right)$ |
| 10a | $\begin{aligned} & 5.27\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6} \text { and } \mathrm{C}_{10}-\mathrm{H}\right), 7.22-7.76(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 10.15 \\ & \left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} \text { Exch. with } \mathrm{D}_{2} \mathrm{O}\right) \end{aligned}$ |
| 10b | $3.60\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 5.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6} \text { and } \mathrm{C}_{10}-\mathrm{H}\right), 7.28-7.87$ $(\mathrm{m}, 8 \mathrm{H}, \mathrm{ArH}), 10.18$ ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$ Exch. with $\mathrm{D}_{2} \mathrm{O}$ ) |
| 10c | $\begin{aligned} & 5.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6} \text { and } \mathrm{C}_{10}-\mathrm{H}\right), 7.21-7.76(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 10.22 \\ & \left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} \text { Exch. with } \mathrm{D}_{2} \mathrm{O}\right) \end{aligned}$ |
| 11a | $5.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{7}\right.$ and $\left.\mathrm{C}_{11}-\mathrm{H}\right), 7.38-7.76(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}$ ), 9.01 (s, $2 \mathrm{H}, \mathrm{NH}$ Exch. with $\mathrm{D}_{2} \mathrm{O}$ ) |
| 11b | $3.60\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}^{2}-\mathrm{OCH}_{3}\right), 5.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{7} \text { and } \mathrm{C}_{11}-\mathrm{H}\right), 7.22-7.81$ $(\mathrm{m}, 8 \mathrm{H}, \mathrm{ArH}), 8.88$ (s, 2H, NH Exch. with $\mathrm{D}_{2} \mathrm{O}$ ) |
| 11c | $5.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{7}\right.$ and $\left.\mathrm{C}_{11}-\mathrm{H}\right), 7.21-7.75(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 8.89$ (s, $2 \mathrm{H}, \mathrm{NH}$ Exch. with $\mathrm{D}_{2} \mathrm{O}$ ) |
| 12a | $\begin{aligned} & 5.53\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{7} \text { and } \mathrm{C}_{11}-\mathrm{H}\right), 7.22-7.76(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 9.12 \\ & \left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH} \text { Exch. with } \mathrm{D}_{2} \mathrm{O}\right) \end{aligned}$ |
| 12b | $\begin{aligned} & 3.62\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 5.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{7} \text { and } \mathrm{C}_{11}-\mathrm{H}\right), 7.21- \\ & 7.77(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 9.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH} \text { Exch. with } \mathrm{D}_{2} \mathrm{O}\right) \end{aligned}$ |
| 12c | $5.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{7}\right.$ and $\left.\mathrm{C}_{11}-\mathrm{H}\right), 7.20-7.76(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 9.21(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NH}$ Exch. with $\mathrm{D}_{2} \mathrm{O}$ ) |
| 13a | $\begin{aligned} & 5.49\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6} \text { and } \mathrm{C}_{10}-\mathrm{H}\right), 7.20-7.75(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 9.32- \\ & 9.36\left(\mathrm{bs}, 3 \mathrm{H}, \mathrm{NH}_{2}, \mathrm{NH} \text { Exch.with } \mathrm{D}_{2} \mathrm{O}\right) \end{aligned}$ |
| 13b | $3.61\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 5.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6}\right.$ and $\left.\mathrm{C}_{10}-\mathrm{H}\right), 7.21-7.75$ (m, 8H, ArH), 9.41-9.45 (bs, $3 \mathrm{H}, \mathrm{NH}_{2}$, NH Exch. with $\mathrm{D}_{2} \mathrm{O}$ ) |
| 13c | $5.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6}\right.$ and $\left.\mathrm{C}_{10}-\mathrm{H}\right), 7.22-7.76(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 9.40-$ 9.43 (bs, $3 \mathrm{H}, \mathrm{NH}_{2}$, NH Exch. with $\mathrm{D}_{2} \mathrm{O}$ ) |
| 14a | $5.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6}\right.$ and $\left.\mathrm{C}_{10}-\mathrm{H}\right), 7.24-7.76(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 9.81$ (s, $2 \mathrm{H}, \mathrm{NH}_{2}$ Exch. with $\mathrm{D}_{2} \mathrm{O}$ ) |
| 14b | $3.62\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 5.47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6}\right.$ and $\left.\mathrm{C}_{10}-\mathrm{H}\right), 7.25-$ $7.75(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 9.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$ Exch. with $\left.\mathrm{D}_{2} \mathrm{O}\right)$ |
| 14c | $5.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6}\right.$ and $\left.\mathrm{C}_{10}-\mathrm{H}\right), 7.23-7.77(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 9.84$ (s, $2 \mathrm{H}, \mathrm{NH}_{2}$ Exch. with $\mathrm{D}_{2} \mathrm{O}$ ) |
| 15a | $5.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{7}\right.$ and $\left.\mathrm{C}_{11}-\mathrm{H}\right), 7.21-7.76(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 9.17$ ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$ Exch. with $\mathrm{D}_{2} \mathrm{O}$ ), 9.89 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}$ Exch. with $\mathrm{D}_{2} \mathrm{O}$ ) |
| 15b | $3.58\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 5.46\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{7}\right.$ and $\left.\mathrm{C}_{11}-\mathrm{H}\right), ~ 7.21-7.75$ (m, 8H, ArH), $9.16\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}\right.$ Exch. with $\left.\mathrm{D}_{2} \mathrm{O}\right), 9.80(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{NH}_{2}$ Exch. with $\mathrm{D}_{2} \mathrm{O}$ ) |
| 15c | $5.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{7}\right.$ and $\left.\mathrm{C}_{11}-\mathrm{H}\right), 7.20-7.76(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 9.19(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}$ Exch. with $\mathrm{D}_{2} \mathrm{O}$ ), 9.81 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}$ Exch. with $\mathrm{D}_{2} \mathrm{O}$ ) |
| 16a | 1.43 (s, 1H, SH Exch.. with $\mathrm{D}_{2} \mathrm{O}$ ), 5.47 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{C}_{7}$ and $\mathrm{C}_{11}-\mathrm{H}$ ), 7.21-7.77 (m, 10H, ArH), $9.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$ Exch. with $\left.\mathrm{D}_{2} \mathrm{O}\right)$ |
| 16b | 1.45 (s, 1H, SH Exch. Exch. with $\mathrm{D}_{2} \mathrm{O}$ ), 3.60 (s, $6 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}$ ), $5.49\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{7}\right.$ and $\left.\mathrm{C}_{11}-\mathrm{H}\right), 7.22-7.75(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 9.60(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{NH}_{2}$ Exch. with $\mathrm{D}_{2} \mathrm{O}$ ) |
| 16c | 1.41 ( $\mathrm{s}, 1 \mathrm{H}$, SH Exch. with $\mathrm{D}_{2} \mathrm{O}$ ), 5.48 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{C}_{7}$ and $\mathrm{C}_{11}-\mathrm{H}$ ), 7.20-7.75 (m, 8H, ArH), 9.64 (s, 2H, NH 2 Exch. with $\mathrm{D}_{2} \mathrm{O}$ ) |

## ${ }^{13}$ C NMR <br> $\delta\left(\mathrm{DMSO}_{6}\right), \mathrm{ppm}$

$$
45.18\left(\mathrm{C}_{5}\right), 117.22\left(\mathrm{C}_{6} \text { and } \mathrm{C}_{10}\right), 145.20\left(\mathrm{C}_{7} \text { and } \mathrm{C}_{9}\right)
$$ $169.48\left(\mathrm{C}_{1}\right.$ and $\left.\mathrm{C}_{4}\right)$

$45.01\left(\mathrm{C}_{5}\right), 51.68\left(\mathrm{Ar}-\mathrm{OCH}_{3}\right), 117.29\left(\mathrm{C}_{6}\right.$ and $\left.\mathrm{C}_{10}\right)$, $145.25\left(\mathrm{C}_{7}\right.$ and $\left.\mathrm{C}_{9}\right), 169.29\left(\mathrm{C}_{1}\right.$ and $\left.\mathrm{C}_{4}\right)$
$46.22\left(\mathrm{C}_{5}\right), 117.39\left(\mathrm{C}_{6}\right.$ and $\left.\mathrm{C}_{10}\right), 146.21\left(\mathrm{C}_{7}\right.$ and $\left.\mathrm{C}_{9}\right)$ 169.23, $171.45\left(\mathrm{C}_{1}\right.$ and $\left.\mathrm{C}_{4}\right)$
$46.84\left(\mathrm{C}_{5}\right), 51.72\left(\mathrm{Ar}-\mathrm{OCH}_{3}\right), 117.98\left(\mathrm{C}_{6}\right.$ and $\left.\mathrm{C}_{10}\right), 146.54$ $\left(\mathrm{C}_{7}\right.$ and $\left.\mathrm{C}_{9}\right), 169.02,171.51\left(\mathrm{C}_{1}\right.$ and $\left.\mathrm{C}_{4}\right)$
$45.28\left(\mathrm{C}_{6}\right), 117.49\left(\mathrm{C}_{7}\right.$ and $\left.\mathrm{C}_{11}\right), 146.99\left(\mathrm{C}_{8}\right.$ and $\left.\mathrm{C}_{10}\right)$, $159.82\left(\mathrm{C}_{3}\right) 171.97\left(\mathrm{C}_{1}\right.$ and $\left.\mathrm{C}_{5}\right)$
$45.50\left(\mathrm{C}_{6}\right), 118.04\left(\mathrm{C}_{7}\right.$ and $\left.\mathrm{C}_{11}\right), 147.02\left(\mathrm{C}_{8}\right.$ and $\left.\mathrm{C}_{10}\right)$, $159.87\left(\mathrm{C}_{3}\right) 171.64\left(\mathrm{C}_{1}\right.$ and $\left.\mathrm{C}_{5}\right)$
$45.42\left(\mathrm{C}_{6}\right), 116.93\left(\mathrm{C}_{7}\right.$ and $\left.\mathrm{C}_{11}\right), 147.52\left(\mathrm{C}_{8}\right.$ and $\left.\mathrm{C}_{10}\right)$, $159.81\left(\mathrm{C}_{3}\right) 171.59\left(\mathrm{C}_{1}\right.$ and $\left.\mathrm{C}_{5}\right)$
$43.98\left(\mathrm{C}_{5}\right), 119.14\left(\mathrm{C}_{6}\right.$ and $\left.\mathrm{C}_{10}\right), 142.92\left(\mathrm{C}_{7}\right.$ and $\left.\mathrm{C}_{9}\right)$, $165.02\left(\mathrm{C}_{4}\right) 170.21\left(\mathrm{C}_{1}\right)$

```
44.26 ( ( }\mp@subsup{\textrm{S}}{5}{}),118.91(\mp@subsup{\textrm{C}}{6}{}\mathrm{ and }\mp@subsup{\textrm{C}}{10}{}),143.76(\mp@subsup{\textrm{C}}{7}{}\mathrm{ and }\mp@subsup{\textrm{C}}{9}{})\mathrm{ ),
164.12 (\mp@subsup{C}{4}{})170.42 (\mp@subsup{C}{1}{})
45.55 (\mp@subsup{C}{5}{}),119.12 ( ( }\mp@subsup{\textrm{C}}{6}{}\mathrm{ and }\mp@subsup{\textrm{C}}{10}{}),143.28(\mp@subsup{\textrm{C}}{7}{}\mathrm{ and }\mp@subsup{\textrm{C}}{9}{})\mathrm{ ,
165.49 (C4) 173.21 (C1)
45.51 ( ( }\mp@subsup{\textrm{C}}{6}{}),119.92(\mp@subsup{\textrm{C}}{6}{}\mathrm{ and }\mp@subsup{\textrm{C}}{10}{}),143.91(\mp@subsup{\textrm{C}}{7}{}\mathrm{ and }\mp@subsup{\textrm{C}}{9}{})\mathrm{ ,
164.91 (C4
43.23(\mp@subsup{C}{6}{}),117.62( (\mp@subsup{\textrm{C}}{7}{}\mathrm{ and }\mp@subsup{\textrm{C}}{11}{}),143.01(\mp@subsup{\textrm{C}}{8}{}\mathrm{ and }\mp@subsup{\textrm{C}}{10}{})\mathrm{ ),}
162.34 (\mp@subsup{\textrm{C}}{3}{})178.45 (\mp@subsup{\textrm{C}}{1}{}),186.77 (\mp@subsup{\textrm{C}}{5}{})
43.27(\mp@subsup{\textrm{C}}{6}{}),51.71(\textrm{Ar}-\textrm{OCH}}\mp@subsup{)}{3}{})117.31(\mp@subsup{\textrm{C}}{7}{}\mathrm{ and C C }11),143.2
(C8 and C}\mp@subsup{\textrm{C}}{10}{}),162.21(\mp@subsup{\textrm{C}}{3}{})178.92(\mp@subsup{\textrm{C}}{1}{}),186.22(\mp@subsup{\textrm{C}}{5}{}
```

```
41.49(\mp@subsup{\textrm{C}}{6}{}),117.63(\mp@subsup{\textrm{C}}{7}{}\mathrm{ and }\mp@subsup{\textrm{C}}{11}{}),144.79(\mp@subsup{\textrm{C}}{8}{}\mathrm{ and }\mp@subsup{\textrm{C}}{10}{})\mathrm{ ),}
162.91 (C C ) 176.76 ( ( C }),179.96 (\mp@subsup{\textrm{C}}{5}{}
41.12(C6),51.69(Ar-OCH3)116.82(C)
(C}\mp@subsup{\textrm{C}}{8}{}\mathrm{ and ( C 10}),163.54(\mp@subsup{\textrm{C}}{3}{})176.93(\mp@subsup{\textrm{C}}{1}{}),180.54(\mp@subsup{\textrm{C}}{5}{}
```


## EXPERIMENTAL

Melting points were determined on Mel-Temp apparatus and were uncorrected. The IR spectra were recorded on Perkin-Elmer 1600 FT-IR spectrometer using KBr disc. The wave numbers were in $\mathrm{cm}^{-1}$. NMR spectra were recorded on a Bruker spectrospin 300 MHz spectrometer with TMS as an internal standard. The chemical shifts were measured in ppm. Purity of the com-
pounds were checked by TLC using silica gel ' $\mathrm{G}^{\prime}$ ( BDH ) and hexane-ethyl acetate as eluents.

2,6-Diaryl-4,4-dimethoxycarbonyl-1,4-dihydropyridine (3) or 2,6-diaryl-4-cyano-4-ethoxy- carbonyl-1,4-dihydropyridine (4).

A mixture of 10 mmoles of 1 or 2 and 1.5 g of ammonium acetate in 20 ml of acetic acid was refluxed for 2 hours. The reaction mixture was cooled and poured onto crushed ice. The products
obtained were recrystallized from methanol to give $\mathbf{3}$ or $\mathbf{4}$ (Table 1).

2,6-Diaryl-4,4-dimethoxycarbonyl-4H-pyran (7) or 2,6-Diaryl-4-cyano-4-ethoxycarbonyl-4H-pyran (8).

Compounds $\mathbf{1}$ or $\mathbf{2}$ ( 10 mmoles ) were dissolved in 30 ml of dry benzene. To this 2 g of phosphorus pentoxide was added and refluxed for 8-10 hours using a Dean-Stark apparatus. The reaction mixture was filtered, washed with water, brine and dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ). The solvent was evaporated in vacuo, and the resultant products were recrystallized from ethanol to furnished $\mathbf{7}$ or $\mathbf{8}$ (Table 1).

2,6-Diaryl-4,4-dimethoxycarbonyl-4H-thiopyran (5) or 2,6-diaryl-4-cyano-4-ethoxycarbonyl-4 H -thiopyran (6).

Method 1.
To a solution of 10 mmoles of $\mathbf{1}$ or $\mathbf{2}$ in 25 ml of xylene, 15 mmoles of phosphorus pentasulfide was added and refluxed for 10 hours at $130-140{ }^{\circ} \mathrm{C}$. The cooled contents were filtered to remove excess phosphorus pentasulfide. The solvent was removed under reduced pressure. The residue was recrystallized from ethanol to afford $\mathbf{5}$ or $\mathbf{6}$ (Table 1).

Method 2: Conversion of $\mathbf{7}$ or $\mathbf{8}$ to $\mathbf{5}$ or $\mathbf{6}$.
A solution of 5 mmoles of $\mathbf{7}$ or $\mathbf{8}$ in 20 ml of xylene and 10 mmoles of phosphorus pentasulfide were refluxed for 3 hours and worked up as described above to give 5 or $\mathbf{6}$ (Table 1).
7,9-Diaryl-8-thia-2,3-diazaspiro[4,5]deca-6,9-diene-1,4-dione (9), 7,9-diaryl-2-oxa-8-thia-3-azaspiro[4,5]deca-6,9-diene-1,4dione (10), 8,10-diaryl-9-thia-2,4-diazaspiro[5,5]undeca-7,10-diene-1,3,5-trione (11), 8,10-diaryl-3-thioxo-9-thia-2,4-diaza-spiro[5,5]undeca-7,10-diene-1,5-dione (12).
A mixture of 10 mmoles of $\mathbf{5}, 15 \mathrm{mmoles}$ of $80 \%$ hydrazine hydrate or 10 mmoles of either hydroxylamine hydrochloride, urea or thiourea as appropriate (Scheme 2) in 20 ml of methanol and 5 ml of $10 \%$ sodium methoxide was refluxed for 5-6 hours. The solution was cooled and poured onto crushed ice containing hydrochloric acid. The solid obtained was recrystallized from methanol to give 9-12 (Table 2).

4-Amino-7,9-diaryl-8-thia-2,3-diazaspiro[4,5]deca-3,6,9-trien-1one (13), 4-amino-7,9-diaryl-2-oxa-8-thia-3-azaspiro[4,5]deca-3,6,9-trien-1-one (14), 5-amino-3-hydroxy-8,10-diaryl-9-thia-

2,4-diazaspiro[5,5]undeca-2,4,7,10-tetraen-1-one (15) and 5-amino-3-mercapto-8,10-diaryl-9-thia-2,4-diazaspiro[5,5]undeca-2,4,7,10-tetraen-1-one (16).

To a solution of 10 mmoles of $\mathbf{6}$ in 20 ml of ethanol, 15 mmoles of hydrazine hydrate or 10 mmoles of either hydroxylamine hydrochloride, urea or thiourea as appropriate (Scheme 3), 5 ml of $10 \%$ sodium ethoxide were added and refluxed for 68 hours, The cooled reaction mixture was poured onto crushed ice containing acetic acid. The solid separated was recrystallized from methanol to give 13-16 (Table 2).

## Acknowledgements.

One of the authors (AB) wishes to thank CSIR, New Delhi, India for the award of Senior Research Fellowship, while another author (DBR) is grateful to UGC for the award of Emeritus Fellowship to him.

## REFERENCES AND NOTES

[^0]
[^0]:    * Author to whom correspondence should be sent: e-Mail: bdandu@yahoo.com; Fax: 091-8574-50274.
    [1a] R. M. Ray and J. N.V. Ray, J. Chem. Soc., 127, 2721 (1925); [b] D. Girdina, R. Ballini, G. M. Cingaolani and B. K. Pietroni, Tet. Lett., 249 (1979); [c] Padmavathi, A. Balaiah and D. Bhaskar Reddy, Indian J. Chem., (Communicated).
    [2a] V. Baliah and T. Rangarajan, J. Org. Chem., 26, 970 (1961); [b] M. Schwarz, P. Trska and J. Kuthan, Collect. Czech. Chem. Commun., 54, 1854 (1989); [c] P. Sebek, S. Nespurek, R. Hrabal, M. Adamec and J. Kuthan, J. Chem. Soc. Perkin Trans. 2, 1301 (1992).
    [3a] D. Bhaskar Reddy, V. Padmavathi and P. V. Ramana Reddy, Indian J.Chem., 31B, 774 (1992); [b] D. Bhaskar Reddy, V. Padmavathi, B. Seenaiah and A. Padmaja, Heteroatom Chem., 4, 55 (1993); [c] D. Bhaskar Reddy, M. V. Ramana Reddy and V. Padmavathi, Indian J. Chem., 37B, 167 (1998); [d] D. Bhaskar Reddy, M. V. Ramana Reddy and V. Padmavathi, Heteroatom Chem., 10, 17 (1999); [f] D. Bhaskar Reddy, N. Chandrasekhar Babu and V. Padmavathi, Heteroatom Chem., 12, 113 (2001); [g] D. Bhaskar Reddy, N. Chandrasekhar Babu and V. Padmavathi, J. Heterocyclic Chem., 38, 769 (2001).
    [4] Y. Kook Hoh, K. Bang and H. Kim, J. Heterocyclic Chem., 38, 89 (2001).
    [5] R. M. Silverstein, G. C. Bassler and T. C. Morrill, "Spectometric Identification of Organic compounds" Fifth Edition, John Wiley \& Sons, New York, New York.

