2,6-Diaryl-4,4-disubstituted-4*H*-thiopyran: Source for Spiro Heterocycles

Venkatapuram Padmavathi*, Akula Balaiah and Dandu Bhaskar Reddy

Department of Chemistry, Sri Venkateswara University, Tirupati -517 502, India Received October 22, 2001

The 1,5-diaryl-3,3-disubstituted-1,5-pentanedione on reaction with ammonium acetate, phosphorus pentoxide and phosphorus pentasulfide gave respective 1,4-dihydropyridine, 4H-pyran and 4H-thiopyran. Novel spiro heterocycles have been obtained by the cyclocondensation of 4H-thiopyran with hydrazine, hydroxylamine, urea and thiourea.

J. Heterocyclic Chem., 39, 649 (2002).

As a result of our sustained efforts in the search for new and versatile multi-functional reactive intermediates, recently we have reported the preparation of 1,5-diaryl-3,3-disubstituted-1,5-pentanediones 1 and 2 by the reaction of phenacyl bromide with dimethyl malonate and ethylcyano acetate [1]. The presence of dicarbonyl functionality in 1 and 2 enabled us to incorporate N, O and S as heteroatoms in them [2]. This gave scope for us to design and develop hitherto unknown spiro heterocycles by exploiting the gem diester or cyano ester groups of 1,4-dihydropyridine (3 and 4), 4H-thiopyran (5 and 6) and 4H-pyran (7 and 8). In fact, during the last decade we were actively involved in the syntheses of several spiro-heterocycles [3]. In further development of this synthetic strategy, we have now considered the reactivity of the 2,6-diaryl-4,4-disubstituted-4*H*-thiopyran(5 and 6) with hydrazine, hydroxylamine, urea and thiourea.

The synthetic method involves the reaction of 1,5diaryl-3,3-dimethoxycarbonyl-1,5-pentanedione (1) or 1,5-diaryl-3-cyano-3-ethoxycarbonyl-1,5-pentanedione (2) with ammonium acetate in acetic acid, phosphorus pentasulfide in xylene and phosphorus pentoxide in dry benzene under reflux conditions to obtain 2,6-diaryl-4,4dimethoxycarbonyl-1,4-dihydropyridine (3) or 2,6-diaryl-

Ar a) C₆H₅, b) 4-OMeC₆H₄, c) 4-ClC₆H₄

Table 1 Physical Properties for Compounds **3-8**

Table 2 Physical Properties for Compounds **9-16**

Comp.	M.P	Yield	Molecular formula	Calcd. (Found) %			Comp.	M.P	Yield	Molecular formula	Calcd. (Found) %		
Ĩ	(°C)	(%)	(Molecular weight)	С	Н	Ν		(°C)	(%)	(Molecular weight)	С	Н	Ν
3a	168-169	68	C ₂₁ H ₁₉ NO ₄ 349.38	72.19 (72.33)	5.48 (5.54)	4.01 (3.97)	9a	245-247	68	C ₁₉ H ₁₄ N ₂ O ₂ S 334 39	68.24 (68.10)	4.22	8.38 (8.23)
3b	182-183	71	C ₂₃ H ₂₃ NO ₆ 409.43	67.47 (67.25)	5.66 (5.78)	3.42 (3.57)	9b	238-240	64	C ₂₁ H ₁₈ N ₂ O ₄ S 394 44	63.94 (64.15)	4.60	7.10 (7.22)
3c	148-149	64	C ₂₁ H ₁₇ Cl ₂ NO ₄ 418.27	60.30 (60.43)	4.10 (4.16)	3.35 (3.19)	9c	229-231	59	$C_{19}H_{12}Cl_2N_2O_2S$ 403.28	56.59 (56.70)	3.00 (2.93)	6.94 (6.78)
4 a	152-153	66	$\begin{array}{c} C_{21}H_{18}N_2O_2\\ 330.38 \end{array}$	76.34 (76.50)	5.49 (5.53)	8.48 (8.29)	10a	199-200	69	C ₁₉ H ₁₃ NO ₃ S 335 37	68.04 (68.26)	3.91 (3.84)	4.18
4b	170-171	69	C ₂₃ H ₂₂ N ₂ O ₄ 390.43	70.75 (70.62)	5.68 (5.72)	7.17	10b	211-212	61	$C_{21}H_{17}NO_5S$ 395.43	(63.79 (63.56)	(3.34) 4.33 (4.40)	3.54
4c	132-133	62	$C_{21}H_{16}Cl_2N_2O_2$ 399.27	63.17 (63.08)	4.04 (4.12)	7.02	10c	185-186	70	$C_{19}H_{11}C_{12}NO_3S$	(05.50) 56.45 (56.53)	(4.40) 2.74 (2.70)	(3.05) 3.46 (3.38)
5a	181-182	40 57*	C ₂₁ H ₁₈ O ₄ S 366.43	69.83 (69.70)	4.95	-	11a	280-282	55	$C_{20}H_{14}N_2O_3S$	(50.55) 66.28 (66.38)	(2.70) 3.89 (3.97)	(3.38) 7.73
5b	192-194	35 51*	$C_{23}H_{22}O_6S$ 426.48	64.77 (64.66)	5.20	-	11b	286-288	58	$C_{22}H_{18}N_2O_5S$	(00.38) 62.55	(3.97) 4.29	(7.03) 6.63
5c	168-169	38 59*	$C_{21}H_{16}Cl_2O_4S$ 435.32	57.94 (57.84)	(3.70 (3.79)	-	11c	274-276	51	$C_{20}H_{12}Cl_2N_2O_3S$	(62.73) 55.70 (55.54)	(4.30) 2.80 (2.87)	(6.70) 6.49
6a	158-159	42 62*	C ₂₁ H ₁₇ NO ₂ S 347 43	72.59	4.93 (4.97)	4.03	12a	282-284	60	$C_{20}H_{14}N_2O_2S_2$	(33.34) 63.47 (63.55)	(2.87) 3.73	(0.33) 7.40
6b	172-173	39 50*	C ₂₃ H ₂₁ NO ₄ S 407 48	67.79 (67.92)	5.19	3.43	12b	277-279	59	$C_{22}H_{18}N_2O_4S_2$	(03.33) 60.26	(3.03)	(7.30) 6.39
6c	146-147	45 52*	$C_{21}H_{15}Cl_2NO_2S$ 416.32	60.58 (60.73)	3.63	3.36 (3.47)	12c	268-270	57	$C_{20}H_{12}Cl_2N_2O_2S_2$	(60.14) 53.70	(4.24) 2.70	(6.27) 6.26
7a	143-144	65	$C_{21}H_{18}O_5$ 350.36	71.99 (71.81)	5.18	-	13a	210-211	63	$C_{19}H_{15}N_3OS$	(53.88) 68.45	(2.65)	(6.37) 12.60
7b	151-152	72	$C_{23}H_{22}O_7$	67.31 (67.50)	(5.12) 5.40 (5.47)	-	13b	245-247	54	$C_{21}H_{19}N_3O_3S$	(68.58) 64.10	(4.44)	(12.75)
7c	175-176	69	$C_{21}H_{16}Cl_2O_5$ 419.25	60.16 (60.28)	3.85	-	13c	233-234	62	$C_{19}H_{13}Cl_2N_3OS$	(64.15) 56.73	(4.80) 3.26	(10.80)
8a	132-133	78	C ₂₁ H ₁₇ NO ₃ 331 36	76.12 (76.37)	(5.90) 5.17 (5.10)	4.23	1 4 a	182-183	65	$C_{19}H_{14}N_2O_2S$	(56.59) 68.24	(3.36) 4.22	(10.35) 8.38
8b	149-150	75	$C_{23}H_{21}NO_5$ 391.41	70.58	5.41 (5.36)	3.58	14b	169-170	60	$C_{21}H_{18}N_2O_4S$	(68.09) 63.94	(4.17) 4.60	(8.31) 7.10
8C	135-136	71	$C_{21}H_{15}Cl_2NO_3$ 400.25	63.02 (62.90)	(3.30) 3.78 (3.85)	(3.50) (3.32)	14C	195-196	58	$C_{19}H_{12}Cl_2N_2O_2S$	(63.71) 56.59	(4.56) 3.00	(7.23) 6.95
* Yields obtained in method 2.						15a	266-268	65	403.28 C ₂₀ H ₁₅ N ₃ O ₂ S 361.41	(56.74) 66.46 (66.65)	(3.07) 4.18 (4.27)	(6.83) 11.63 (11.72)	
							15b	272-274	69	C ₂₂ H ₁₉ N ₃ O ₄ S 421.47	62.69 (62.77)	(4.59)	(11.72) 9.97 (9.85)

15c

16a

16b

16c

291-293

257-259

294-296

281-283

66

72

68

70

7,10-diene-1,3,5-trione (11) and 8,10-diaryl-3-thioxo-9thia-2,4-diaza-spiro[5,5]undeca-7,10-diene-1,5-dione (12) respectively (see Scheme 2). In a similar way the reaction of 6 in the presence of sodium ethoxide furnished 4amino-7,9-diaryl-8-thia-2,3-diazaspiro[4,5]deca-3,6,9trien-1-one (13), 4-amino-7,9-diaryl-2-oxa-8-thia-3-azaspiro[4,5]deca-3,6,9-trien-1-one (14), 5-amino-3-hydroxy-8,10-diaryl-9-thia-2,4-diazaspiro[5,5]undeca-2,4,7,10tetraen-1-one (15) and 5-amino-3-mercapto-8,10-diaryl-9thia-2,4-diaza-spiro[5,5]undeca-2,4,7,10-teraen-1-one (16) (see Scheme 3 and Table 2). The IR spectra of 9-16 exhibited absorption bands in the region 1495-1510 (C=S) [4], 1655-1725 (CONH), 1745-1770 (CO-O), 3300-3440 (OH) and 3100-3310 (CONH, and NH₂). The absorption for the SH group generally appears as a weak band around 2550-2600 [5], however this is not observed for our compounds. The ¹H NMR spectra of all these compounds

showed singlets at 1.41-1.42 (SH), 5.20-5.67 (C₆-H and C₁₀-H, C₇-H and C₁₁-H) and 8.88-10.22 (NH₂, NH and OH). The δ_C values obtained in their ¹³C NMR spectra also support the structures (Table 4).

C20H13Cl2N3O2S

430.31

C20H15N3OS2

377.48

C22H19N3O3S2

437.53

C20H13Cl2N3OS2

446.37

55.82

(55.66)

63.64

(63.54)

60.39

(60.57)

53.81

(53.70)

3.05

(2.98)

4.01

(4.08)

4.38

(4.48)

2.94

(2.88)

9.77

(9.81)

11.13

(11.28)

9.60

(9.49)

9.41

(9.58)

In conclusion, interesting spiro heterocycles were conveniently prepared by a straightforward successfully established method from simple substrates such as phenacyl bromide and active methylene compounds.

Table 3

Spectroscopic Data of Compounds 3-8

Compd.	¹ H NMR	¹³ C NMR
1	δ (CDCl ₃), ppm	δ (CDCl ₃), ppm
3a	3.82 (s, 6H, CO ₂ <i>CH</i> ₃), 5.24 (s, 2H, C ₃ and C ₅ -H), 7.20- 7.74 (m, 10H, ArH), 9.03 (s, 1H, NH Exch. with D ₂ O)	45.21 (C ₄), 52.35 (CO ₂ CH ₃), 119.11 (C ₃ and C ₅), 142.15 (C ₂ and C ₆), 173.25 (COOCH ₃)
3b	3.62 (s, 6H, Ar-O <i>CH</i> ₃), 3.83 (s, 6H, CO ₂ <i>CH</i> ₃), 5.29 (s, 2H, C ₃ and C ₅ -H), 7.19-7.75 (m, 8H, ArH), 9.22 (s, 1H, NH Exch. with D ₂ O)	
3c	3.83 (s, 6H, CO ₂ <i>CH</i> ₃), 5.22 (s, 2H, C ₃ and C ₅ -H), 7.22- 7.75 (m, 8H, ArH), 9.13 (s, 1H, NH Exch. with D ₂ O)	45.62 (C ₄), 52.41 (CO ₂ CH ₃), 119.27 (C ₃ and C ₅), 142.35 (C ₂ and C ₆), 173.28 (COOCH ₃)
4a	1.42 (t, 3H, -OCH ₂ CH ₃), 4.36 (q, 2H, -OCH ₂ CH ₃), 5.32 (s, 2H, C ₃ and C ₅ -H), 7.24-7.75 (m, 10H, ArH), 9.20 (s, 1H, NH Exch. with D ₂ O)	14.21 (OCH ₂ CH ₃ , 45.23 (C ₄), 63.55 (-OCH ₂ CH ₃), 113.25 (CN), 120.24 (C ₃ and C ₅), 142.21 (C ₂ and C ₆), 169.48 (COOCH ₂ CH ₃)
4b	1.44 (t, 3H, -OCH ₂ CH ₃), 3.57 (s, 6H, Ar-OCH ₃), 4.35 (q, 2H, -OCH ₂ CH ₃), 5.38 (s, 2H, C ₃ and C ₅ -H), 7.23-7.75 (m, 8H, ArH, 9.06 (s, 1H, NH exch. with D ₂ O)	14.19 (OCH ₂ CH ₃), 45.27 (C ₄), 51.62 (Ar-OCH ₃), 63.58 (-OCH ₂ CH ₃), 113.54 (CN), 120.54 (C ₃ and C ₅), 142.28 (C ₂ and C ₆), 169.00 (COOCH ₂ CH ₃)
4c	1.41 (t, 3H, -OCH ₂ CH ₃), 4.36 (q, 2H, -OCH ₂ CH ₃), 5.33 (s, 2H, C ₃ and C ₅ -H), 7.24-7.75 (m, 8H, ArH), 9.11 (s, 1H, NH exch. with D_2O)	
5a	3.78 (s, 6H, CO ₂ <i>CH</i> ₃), 5.84 (s, 2H, C ₃ and C ₅ -H), 7.19-7.75 (m, 10H, ArH)	45.49 (C ₄), 52.51 (CO ₂ CH ₃), 110.23 (C ₃ and C ₅), 145.17 (C ₂ and C ₆), 171.29 (COOCH ₃)
5b	3.61 (s, 6H, Ar-O <i>CH</i> ₃), 3.82 (s, 6H, CO ₂ <i>CH</i> ₃), 5.86 (s, 2H, C ₃ and C ₅ -H), 7.22-7.75 (m, 8H, ArH)	45.57 (C ₄), 52.56 (CO ₂ CH ₃), 51.72 (Ar-OCH ₃), 110.77 (C ₃ and C ₅),145.61 (C ₂ and C ₆), 171.98 (COOCH ₃)
5c	3.79 (s, 6H, CO ₂ <i>CH</i> ₃), 5.82 (s, 2H, C ₃ and C ₅ -H), 7.20-7.75 (m, 8H, ArH)	
6a	1.43 (t, 3H, -OCH ₂ CH ₃), 4.37 (q, 2H, -OCH ₂ CH ₃), 5.77 (s, 2H, C ₃ and C ₅ -H), 7.21-7.75 (m, 10H, ArH)	14.68 (OCH ₂ CH ₃), 45.67 (C ₄), 63.65 (-OCH ₂ CH ₃), 110.82 (C ₃ and C ₅), 113.61 (CN), 151.53 (C ₂ and C ₆), 168.89 (COOCH ₂ CH ₃),
6b	1.43 (t, 3H, -OCH ₂ CH ₃), 3.62 (s, 6H, Ar-OCH ₃), 4.38 (q, 2H, -OCH ₂ CH ₃), 5.75 (s, 2H, C ₃ and C ₅ -H), 7.20-7.75 (m, 8H, ArH)	
6c	1.41 (t, 3H, -OCH ₂ CH ₃), 4.36 (q, 2H, -OCH ₂ CH ₃), 5.75 (s, 2H, C ₃ and C ₅ -H), 7.21-7.76 (m, 8H, ArH)	14.58 (OCH ₂ CH ₃), 45.66 (C ₄), 63.67 (-OCH ₂ CH ₃), 110.81 (C ₃ and C ₅), 113.58 (CN), 152.28 (C ₂ and C ₆), 168.57 (COOCH ₂ CH ₃)
7a	3.80 (s, 6H, CO ₂ <i>CH</i> ₃), 5.76 (s, 2H, C ₃ and C ₅ -H), 7.25-7.75 (m, 10H, ArH)	41.52 (C ₄), 53.21 (CO ₂ CH ₃), 93.72 (C ₃ and C ₅), 149.98 (C ₂ and C ₆), 170.18 (COOCH ₃)
7b	3.62 (s, 6H, Ar-OCH ₃), 3.83 (s, 6H, CO ₂ CH ₃), 5.72 (s, 2H, C ₃ and C ₅ -H), 7.28-7.75 (m, 8H, ArH)	
7c	3.81 (s, 6H, CO ₂ <i>CH</i> ₃), 5.75 (s, 2H, C ₃ and C ₅ -H), 7.29-7.74 (m, 8H, ArH)	41.95 (C ₄), 53.26 (CO ₂ CH ₃), 91.78 (C ₃ and C ₅), 149.00 (C ₂ and C ₆), 169.97 (COOCH ₃)
8a	1.40 (t, 3H, -OCH ₂ CH ₃), 4.35 (q, 2H, -OCH ₂ CH ₃), 5.62 (s, 2H, C ₃ and C ₅ -H), 7.24-7.77 (m, 10H, ArH)	14.18 (OCH ₂ CH ₃), 41.08 (C ₄), 63.54 (-OCH ₂ CH ₃), 94.05 (C ₃ and C ₅), 112.80 (CN), 151.48 (C ₂ and C ₆), 167.82 (COOCH ₂ CH ₃)
8b	1.43 (t. 3HOCH ₂ CH ₂), 3.59 (s. 6H. Ar-OCH ₂), 4.33 (g. 2H)	5,, (,,, (- <u>2</u> ,, (),, (, <u>2</u> , <u>3</u>)

8b 1.43 (t, 3H, $-\text{OCH}_2CH_3$), 3.59 (s, 6H, Ar-OCH₃), 4.33 (q, 2H, $-\text{OCH}_2CH_3$), 5.65 (s, 2H, C₃ and C₅-H), 7.22-7.74 (m, 8H, ArH) 1.20 (t, 2H, OCH, CH), 4.28 (z, 2H, OCH, CH), 5.64 (z, 2H)

8c 1.39 (t, 3H, $-OCH_2CH_3$), 4.38 (q, 2H, $-OCH_2CH_3$), 5.64 (s, 2H, C₃ and C₅-H), 7.21-7.72 (m, 8H, ArH)

14.15 (-OCH₂CH₃), 41.24 (C₄), 63.56 (-OCH₂CH₃), 94.90 (C₃ and C₅), 112.77 (CN), 151.42 (C₂ and C₆), 168.11 (COOCH₂CH₃)

Table 4

Spectroscopic Data of Compounds 9-16

Compd	¹ H NMR	¹³ C NMR
F	δ (DMSO-d ₆), ppm	δ (DMSO-d ₆), ppm
	0)/11	
9a	5.25 (s, 2H, C ₆ and C ₁₀ -H), 7.25-7.76 (m, 10H, ArH), 9.09	45.18 (C ₅), 117.22 (C ₆ and C ₁₀), 145.20 (C ₇ and C ₉),
	(s, 2H, NH Exch. with D_2O)	169.48 (C ₁ and C ₄)
9b	3.62 (s, 6H, Ar-OCH ₃), 5.23 (s, 2H, C ₆ and C ₁₀ -H), 7.22-7.77	45.01 (C ₅), 51.68 (Ar-OCH ₃), 117.29 (C ₆ and C ₁₀),
	(m, 8H, ArH), 9.17 (s, 2H, NH Exch. with D ₂ O)	145.25 (C ₇ and C ₉), 169.29 (C ₁ and C ₄)
9c	5.20 (s, 2H, C ₆ and C ₁₀ -H), 7.21-7.75 (m, 8H, ArH), 9.25	
	(s, 2H, NH Exch. with D_2O)	
10a	5.27 (s, 2H, C_6 and C_{10} -H), 7.22-7.76 (m, 10H, ArH), 10.15	46.22 (C ₅), 117.39 (C ₆ and C ₁₀), 146.21 (C ₇ and C ₉),
	(s, 1H, NH Exch. with D_2O)	169.23, 171.45 (C ₁ and C ₄)
10b	3.60 (s, 6H, Ar-OCH ₃), 5.31 (s, 2H, C_6 and C_{10} -H), 7.28-7.87	46.84 (C ₅), 51.72 (Ar-OCH ₃), 117.98 (C ₆ and C ₁₀), 146.54
10-	(m, 8H, ArH), 10.18 (s, 1H, NH Exch. with D_2O)	$(C_7 \text{ and } C_9), 169.02, 1/1.51 (C_1 \text{ and } C_4)$
100	5.52 (s, 2H, C_6 and C_{10} -H), 7.21-7.76 (m, 8H, ArH), 10.22	
11.	(s, 1H, NH EXCI. WITH $D_2(0)$ 5.61 (a, 2H, C, and C, H), 7.28,7.76 (m, 10H, Arth), 0.01	45.28(C) 117.40(C and C) 146.00(C and C)
11a	(s, 2H, NH Evol with D, O)	45.28 (C ₆), 117.49 (C ₇ and C ₁₁), 140.99 (C ₈ and C ₁₀), 150.82 (C ₆) 171.07 (C ₆ and C ₁)
11b	(s, 2H, NH Excli. with $D_2(0)$ 3.60 (s, 6H, Ar OCH.) 5.63 (s, 2H, C- and C., H) 7.22.7.81	$159.82 (C_3) 171.97 (C_1 and C_5)$
110	$(m \ 8H \ ArH) \ 8 \ 88 \ (s \ 2H \ NH \ Exch \ with \ D_{2}O)$	
11c	5.61 (s 2H C ₂ and C ₁₁ -H) 7.21-7.75 (m 8H ArH) 8.89	
110	(s 2H NH Exch with D_2O)	
12a	5.53 (s. 2H, C ₇ and C ₁₁ -H), 7.22-7.76 (m. 10H, ArH), 9.12	45.50 (C ₆), 118.04 (C ₇ and C ₁₁), 147.02 (C ₈ and C ₁₀).
	(s, 2H, NH Exch. with D_2O)	$159.87 (C_3) 171.64 (C_1 \text{ and } C_5)$
12b	3.62 (s, 6H, Ar-OCH ₃), 5.55 (s, 2H, C_7 and C_{11} -H), 7.21-	
	7.77 (m, 8H, ArH), 9.15 (s, 2H, NH Exch. with D ₂ O)	
12c	5.67 (s, 2H, C ₇ and C ₁₁ -H), 7.20-7.76 (m, 8H, ArH), 9.21 (s,	45.42 (C ₆), 116.93 (C ₇ and C ₁₁), 147.52 (C ₈ and C ₁₀),
	2H, NH Exch. with D_2O)	159.81 (C_3) 171.59 $(C_1 \text{ and } C_5)$
13a	5.49 (s, 2H, C ₆ and C ₁₀ -H), 7.20-7.75 (m, 10H, ArH), 9.32-	43.98 (C ₅), 119.14 (C ₆ and C ₁₀), 142.92 (C ₇ and C ₉),
	9.36 (bs, 3H, NH_2 , NH Exch.with D_2O)	165.02 (C ₄) 170.21 (C ₁)
13b	3.61 (s, 6H, Ar-OCH ₃), 5.44 (s, 2H, C ₆ and C ₁₀ -H), 7.21-7.75	
	(m, 8H, ArH), 9.41-9.45 (bs, 3H, NH ₂ , NH Exch. with D ₂ O)	
13c	5.43 (s, 2H, C ₆ and C ₁₀ -H), 7.22-7.76 (m, 8H, ArH), 9.40-	44.26 (C_5), 118.91 (C_6 and C_{10}), 143.76 (C_7 and C_9),
	9.43 (bs, 3H, NH ₂ , NH Exch. with D_2O)	$164.12 (C_4) 170.42 (C_1)$
14a	5.48 (s, 2H, C_6 and C_{10} -H), 7.24-7.76 (m, 10H, ArH), 9.81	45.55 (C ₅), 119.12 (C ₆ and C ₁₀), 143.28 (C ₇ and C ₉),
1.0	(s, 2H, NH ₂ Exch. with D_2O)	$165.49 (C_4) 173.21 (C_1)$
14b	3.62 (s, 6H, Ar-OCH ₃), 5.47 (s, 2H, C_6 and C_{10} -H), 7.25-	
140	7.75 (m, 8H, ArH), 9.85 (s, 2H, NH2 Excn. with D2U) = 5.45 (s, 2H, C, and C, H), 7.22, 7.77 (m, 8H, ArH), 0.84	45.51(C) 110.02(C and C) 142.01(C and C)
140	5.45 (8, 2 Π , C ₆ and C ₁₀ - Π), 7.25-7.77 (III, 8 Π , AI Π), 9.84	45.51 (C ₆), 119.92 (C ₆ and C ₁₀), 145.91 (C ₇ and C ₉), 164.01 (C ₁), 172.82 (C ₁)
150	$(5, 2H, NH_2 \text{ Exclit. with } D_2 O)$ 5 44 (s. 2H, C- and C., H) 7 21 7 76 (m. 10H, ArH) 9 17	$104.91 (C_4) 172.02 (C_1)$ $43.23 (C_2) 117.62 (C_2 and C_2) 143.01 (C_2 and C_2)$
15a	$(s, 1H, OH Fxch with D_{1}O) = 9.89 (s, 2H, NH, Fxch with D_{2}O)$	$162 34 (C_{2}) 178 45 (C_{2}) 186 77 (C_{2})$
15h	$(3, 11, 011 \text{ Excl.}, \text{white } D_2(0), (3, 211, 1012 \text{ Excl.}, \text{white } D_2(0))$ 3.58 (s. 6H, Ar-OCH ₂), 5.46 (s. 2H, C ₂ and C ₁₁₂ H), 7.21-7.75	$43.27 (C_{2}) 51.71 (Ar-OCH_{2}) 117.31 (C_{2} and C_{3}) 143.24$
100	$(m 8H ArH) 9.16 (s 1H OH Exch with D_{2}O) 9.80 (s 2H)$	$(C_0 \text{ and } C_{10})$ 162 21 (C_2) 178 92 (C_1) 186 22 (C_2)
	(H, OI, H, OI, OI, OI, OI, OI, OI, OI, OI, OI, OI	(eg and e10), resist (eg) rives 2 (e1), revise (e3)
15c	5.48 (s. 2H, C ₇ and C ₁₁ -H), 7.20-7.76 (m. 8H, ArH), 9.19 (s.	
	1H, OH Exch. with D_2O), 9.81 (s, 2H, NH ₂ Exch. with D_2O)	
16a	1.43 (s, 1H, SH Exch., with D ₂ O), 5.47 (s, 2H, C ₇ and C ₁₁ -H),	41.49 (C ₆), 117.63 (C ₇ and C ₁₁), 144.79 (C ₈ and C ₁₀),
	7.21-7.77 (m, 10H, ArH), 9.62 (s, 2H, NH ₂ Exch. with D ₂ O)	162.91 (C ₃) 176.76 (C ₁), 179.96 (C ₅)
16b	1.45 (s, 1H, SH Exch. Exch. with D ₂ O), 3.60 (s, 6H, Ar-OCH ₃),	41.12 (C ₆), 51.69 (Ar-OCH ₃) 116.82 (C ₇ and C ₁₁), 145.31
	5.49 (s, 2H, C ₇ and C ₁₁ -H), 7.22-7.75 (m, 8H, ArH), 9.60 (s, 2H,	(C ₈ and C ₁₀), 163.54 (C ₃) 176.93 (C ₁), 180.54 (C ₅)
	NH_2 Exch. with D_2O)	
16c	1.41 (s, 1H, SH Exch. with D_2O), 5.48 (s, 2H, C_7 and C_{11} -H),	
	7.20-7.75 (m, 8H, ArH), 9.64 (s, 2H, NH ₂ Exch. with D ₂ O)	

EXPERIMENTAL

Melting points were determined on Mel-Temp apparatus and were uncorrected. The IR spectra were recorded on Perkin-Elmer 1600 FT-IR spectrometer using KBr disc. The wave numbers were in cm⁻¹. NMR spectra were recorded on a Bruker spectrospin 300 MHz spectrometer with TMS as an internal standard. The chemical shifts were measured in ppm. Purity of the compounds were checked by TLC using silica gel `G' (BDH) and hexane-ethyl acetate as eluents.

2,6-Diaryl-4,4-dimethoxycarbonyl-1,4-dihydropyridine (3) or 2,6-diaryl-4-cyano-4-ethoxy- carbonyl-1,4-dihydropyridine (4).

A mixture of 10 mmoles of 1 or 2 and 1.5 g of ammonium acetate in 20 ml of acetic acid was refluxed for 2 hours. The reaction mixture was cooled and poured onto crushed ice. The products obtained were recrystallized from methanol to give 3 or 4 (Table 1).

2,6-Diaryl-4,4-dimethoxycarbonyl-4*H*-pyran (**7**) or 2,6-Diaryl-4cyano-4-ethoxycarbonyl-4*H*-pyran (**8**).

Compounds 1 or 2 (10 mmoles) were dissolved in 30 ml of dry benzene. To this 2 g of phosphorus pentoxide was added and refluxed for 8-10 hours using a Dean-Stark apparatus. The reaction mixture was filtered, washed with water, brine and dried (anhydrous Na₂SO₄). The solvent was evaporated *in vacuo*, and the resultant products were recrystallized from ethanol to furnished 7 or 8 (Table 1).

2,6-Diaryl-4,4-dimethoxycarbonyl-4*H*-thiopyran (**5**) or 2,6-diaryl-4-cyano-4-ethoxycarbonyl-4*H*-thiopyran (**6**).

Method 1.

To a solution of 10 mmoles of 1 or 2 in 25 ml of xylene, 15 mmoles of phosphorus pentasulfide was added and refluxed for 10 hours at 130-140 °C. The cooled contents were filtered to remove excess phosphorus pentasulfide. The solvent was removed under reduced pressure. The residue was recrystallized from ethanol to afford 5 or 6 (Table 1).

Method 2: Conversion of 7 or 8 to 5 or 6.

A solution of 5 mmoles of 7 or 8 in 20 m1 of xylene and 10 mmoles of phosphorus pentasulfide were refluxed for 3 hours and worked up as described above to give 5 or 6 (Table 1).

7,9-Diaryl-8-thia-2,3-diazaspiro[4,5]deca-6,9-diene-1,4-dione (9), 7,9-diaryl-2-oxa-8-thia-3-azaspiro[4,5]deca-6,9-diene-1,4-dione (10), 8,10-diaryl-9-thia-2,4-diazaspiro[5,5]undeca-7,10-diene-1,3,5-trione (11), 8,10-diaryl-3-thioxo-9-thia-2,4-diazaspiro[5,5]undeca-7,10-diene-1,5-dione (12).

A mixture of 10 mmoles of **5**, 15 mmoles of 80% hydrazine hydrate or 10 mmoles of either hydroxylamine hydrochloride, urea or thiourea as appropriate (Scheme 2) in 20 ml of methanol and 5 ml of 10% sodium methoxide was refluxed for 5-6 hours. The solution was cooled and poured onto crushed ice containing hydrochloric acid. The solid obtained was recrystallized from methanol to give **9-12** (Table 2).

4-Amino-7,9-diaryl-8-thia-2,3-diazaspiro[4,5]deca-3,6,9-trien-1one (**13**), 4-amino-7,9-diaryl-2-oxa-8-thia-3-azaspiro[4,5]deca-3,6,9-trien-1-one (**14**), 5-amino-3-hydroxy-8,10-diaryl-9-thia2,4-diazaspiro[5,5]undeca-2,4,7,10-tetraen-1-one (**15**) and 5-amino-3-mercapto-8,10-diaryl-9-thia-2,4-diazaspiro[5,5]undeca-2,4,7,10-tetraen-1-one (**16**).

To a solution of 10 mmoles of **6** in 20 ml of ethanol, 15 mmoles of hydrazine hydrate or 10 mmoles of either hydroxylamine hydrochloride, urea or thiourea as appropriate (Scheme 3), 5 ml of 10% sodium ethoxide were added and refluxed for 6-8 hours, The cooled reaction mixture was poured onto crushed ice containing acetic acid. The solid separated was recrystallized from methanol to give **13-16** (Table 2).

Acknowledgements.

One of the authors (AB) wishes to thank CSIR, New Delhi, India for the award of Senior Research Fellowship, while another author (DBR) is grateful to UGC for the award of Emeritus Fellowship to him.

REFERENCES AND NOTES

* Author to whom correspondence should be sent: e-Mail: bdandu@yahoo.com; Fax: 091-8574-50274.

[1a] R. M. Ray and J. N.V. Ray, *J. Chem. Soc.*, **127**, 2721 (1925); [b] D. Girdina, R. Ballini, G. M. Cingaolani and B. K. Pietroni, *Tet. Lett.*, 249 (1979); [c] Padmavathi, A. Balaiah and D. Bhaskar Reddy, *Indian J. Chem.*, (Communicated).

 [2a] V. Baliah and T. Rangarajan, J. Org. Chem., 26, 970
(1961); [b] M. Schwarz, P. Trska and J. Kuthan, Collect. Czech. Chem. Commun., 54, 1854 (1989); [c] P. Sebek, S. Nespurek, R. Hrabal, M. Adamec and J. Kuthan, J. Chem. Soc. Perkin Trans. 2, 1301 (1992).

[3a] D. Bhaskar Reddy, V. Padmavathi and P. V. Ramana Reddy, *Indian J.Chem.*, **31B**, 774 (1992); [b] D. Bhaskar Reddy, V. Padmavathi, B. Seenaiah and A. Padmaja, *Heteroatom Chem.*, **4**, 55 (1993); [c] D. Bhaskar Reddy, M. V. Ramana Reddy and V. Padmavathi, *Indian J. Chem.*, **37B**, 167 (1998); [d] D. Bhaskar Reddy, M. V. Ramana Reddy and V. Padmavathi, *Heteroatom Chem.*, **10**, 17 (1999); [f] D. Bhaskar Reddy, N. Chandrasekhar Babu and V. Padmavathi, *Heteroatom Chem.*, **12**, 113 (2001); [g] D. Bhaskar Reddy, N. Chandrasekhar Babu and V. Padmavathi, *J. Heterocyclic Chem.*, **38**, 769 (2001).

[4] Y. Kook Hoh, K. Bang and H. Kim, *J. Heterocyclic Chem.*, **38**, 89 (2001).

[5] R. M. Silverstein, G. C. Bassler and T. C. Morrill, "Spectometric Identification of Organic compounds" Fifth Edition, John Wiley & Sons, New York, New York.